If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-36x-16=0
a = 1; b = -36; c = -16;
Δ = b2-4ac
Δ = -362-4·1·(-16)
Δ = 1360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1360}=\sqrt{16*85}=\sqrt{16}*\sqrt{85}=4\sqrt{85}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-4\sqrt{85}}{2*1}=\frac{36-4\sqrt{85}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+4\sqrt{85}}{2*1}=\frac{36+4\sqrt{85}}{2} $
| -2m(4+3)+16m=24 | | -2m(7)+16m=24 | | 9x+1=4x+10 | | 5^(x+9)=9^(x) | | 5^x+9=9^x | | r÷2=5 | | n-2=31 | | t+14/15=1 | | −3x−4=−2x+5 | | n−5=16 | | 7x+19=2x+15 | | 3x+15=5(x+5) | | q−6=6 | | 5x+48=3(2x–12) | | 7d−4d=6 | | -3j=9.6 | | 3n-11=4n+2 | | X+(6x-93)=180 | | 30÷x=3;x= | | x40=32 | | 17^3x=5^-x-8 | | x35=200 | | 58=y+49 | | 80x-50=190x-1148.9 | | 15-x/2=30 | | 5x+4/7=-3x+12/3 | | (x+5)÷4=-4 | | 3x+-13+40=180 | | (2x+1)-3=10x+2 | | (2x+1)-3=10x | | (2y)-1y=5 | | -25=1/3s-10 |